Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides.

Identifieur interne : 000364 ( Main/Exploration ); précédent : 000363; suivant : 000365

Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides.

Auteurs : Julie Godbout ; Marie-Claude Gros-Louis ; Manuel Lamothe ; Nathalie Isabel

Source :

RBID : pubmed:31892951

Abstract

The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American Populus deltoides W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of P. deltoides genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for P. deltoides were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.

DOI: 10.1111/eva.12854
PubMed: 31892951
PubMed Central: PMC6935597


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species
<i>Populus deltoides</i>
.</title>
<author>
<name sortKey="Godbout, Julie" sort="Godbout, Julie" uniqKey="Godbout J" first="Julie" last="Godbout">Julie Godbout</name>
<affiliation>
<nlm:affiliation>Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Direction de la recherche forestière Québec QC Canada</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gros Louis, Marie Claude" sort="Gros Louis, Marie Claude" uniqKey="Gros Louis M" first="Marie-Claude" last="Gros-Louis">Marie-Claude Gros-Louis</name>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lamothe, Manuel" sort="Lamothe, Manuel" uniqKey="Lamothe M" first="Manuel" last="Lamothe">Manuel Lamothe</name>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Isabel, Nathalie" sort="Isabel, Nathalie" uniqKey="Isabel N" first="Nathalie" last="Isabel">Nathalie Isabel</name>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31892951</idno>
<idno type="pmid">31892951</idno>
<idno type="doi">10.1111/eva.12854</idno>
<idno type="pmc">PMC6935597</idno>
<idno type="wicri:Area/Main/Corpus">000535</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000535</idno>
<idno type="wicri:Area/Main/Curation">000535</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000535</idno>
<idno type="wicri:Area/Main/Exploration">000535</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species
<i>Populus deltoides</i>
.</title>
<author>
<name sortKey="Godbout, Julie" sort="Godbout, Julie" uniqKey="Godbout J" first="Julie" last="Godbout">Julie Godbout</name>
<affiliation>
<nlm:affiliation>Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Direction de la recherche forestière Québec QC Canada</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gros Louis, Marie Claude" sort="Gros Louis, Marie Claude" uniqKey="Gros Louis M" first="Marie-Claude" last="Gros-Louis">Marie-Claude Gros-Louis</name>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lamothe, Manuel" sort="Lamothe, Manuel" uniqKey="Lamothe M" first="Manuel" last="Lamothe">Manuel Lamothe</name>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Isabel, Nathalie" sort="Isabel, Nathalie" uniqKey="Isabel N" first="Nathalie" last="Isabel">Nathalie Isabel</name>
<affiliation>
<nlm:affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">Laurentian Forestry Centre Natural Resources Canada Québec QC Canada</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Evolutionary applications</title>
<idno type="ISSN">1752-4571</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American
<i>Populus deltoides</i>
W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of
<i>P. deltoides</i>
genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for
<i>P. deltoides</i>
were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31892951</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1752-4571</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Evolutionary applications</Title>
<ISOAbbreviation>Evol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species
<i>Populus deltoides</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>176-194</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/eva.12854</ELocationID>
<Abstract>
<AbstractText>The speed and magnitude of global change will have major impacts on riparian ecosystems, thereby leading to greater forest vulnerability. Assessing species' adaptive capacities to provide relevant information for vulnerability assessments remains challenging, especially for nonmodel species like the North American
<i>Populus deltoides</i>
W. Bartram ex Marshall. The objective of this study was to understand how genomic diversity of this foundation species was shaped by its environment (climate, soil, and biotic interactions) to gauge its adaptive capacity. We used two complementary approaches to get a full portrait of
<i>P. deltoides</i>
genetic diversity at both the species and whole-genome ranges. First, we used a set of 93 nuclear and three chloroplastic SNP markers in 946 individuals covering most of the species' natural distribution. Then, to measure the degree of intraspecific divergence at the whole-genome level and to support the outlier and genomic-environment association analyses, we used a sequence capture approach on DNA pools. Three distinct lineages for
<i>P. deltoides</i>
were detected, and their current distribution was associated with abiotic and biotic variations. The comparison between both cpDNA and ncDNA patterns showed that gene flow between the lineages is unbalanced. The southern and northeastern populations may benefit from the input, through river flow, of novel alleles located upstream to their local gene pools. These alleles could migrate from populations that are already adapted to conditions that fit the predicted climates in the receiving local populations, hotter at the northeastern limit and drier in the Central United States. These "preadapted" incoming alleles may help to cope with maladaptation in populations facing changing conditions.</AbstractText>
<CopyrightInformation>© 2019 Her Majesty the Queen in Right of Canada. Evolutionary Applications published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Godbout</LastName>
<ForeName>Julie</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8798-5687</Identifier>
<AffiliationInfo>
<Affiliation>Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière Québec QC Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gros-Louis</LastName>
<ForeName>Marie-Claude</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lamothe</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5947-533X</Identifier>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Isabel</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8621-9801</Identifier>
<AffiliationInfo>
<Affiliation>Canadian Forest Service, Laurentian Forestry Centre Natural Resources Canada Québec QC Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Evol Appl</MedlineTA>
<NlmUniqueID>101461828</NlmUniqueID>
<ISSNLinking>1752-4571</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">adaptive capacity</Keyword>
<Keyword MajorTopicYN="N">connectivity</Keyword>
<Keyword MajorTopicYN="N">conservation</Keyword>
<Keyword MajorTopicYN="N">gene flow</Keyword>
<Keyword MajorTopicYN="N">global change</Keyword>
<Keyword MajorTopicYN="N">host–pathogen interactions</Keyword>
<Keyword MajorTopicYN="N">intraspecific differentiation</Keyword>
</KeywordList>
<CoiStatement>None declared.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31892951</ArticleId>
<ArticleId IdType="doi">10.1111/eva.12854</ArticleId>
<ArticleId IdType="pii">EVA12854</ArticleId>
<ArticleId IdType="pmc">PMC6935597</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecol Evol. 2017 Oct 10;7(22):9426-9440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29187979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19(6):1212-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20163548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Biol. 2016 Feb;30(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26096581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2012 Aug;2(8):1853-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22957188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(2):347-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Sep;22(18):4606-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23906376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Dec;15(12):684-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(9):2178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 May 14;93(10):5090-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Apr;14(4):1045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Manage. 2012 May;49(5):990-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Oct;29(10):3237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22617950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 Jun 10;6(13):4565-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27386097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Oct;204(1):215-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;184(1):48-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2016 Sep 28;283(1839):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27683368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Jan 08;281(1777):20132472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24403328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 Aug;94(8):1708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24015515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Dec;19(23):5265-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21044193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2008 Aug;172(2):160-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2427-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26825293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Jun;14(6):404-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23657479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Apr;218(2):630-645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29314017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jan;81(1):68-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25302566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 Jul;4(14):2884-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2017 Nov;30(11):2044-2058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28862785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Nov 10;6:8890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26555085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Jul;30(7):1687-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Oct;5(10):e1000695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):668-679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27500396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2015 Feb;30(2):78-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25534246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jul;223(1):293-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30843213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Apr;114(4):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25585921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Sep;91(9):1398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2010 May;10(3):564-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2482-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26880192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:349-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1992 Jun;131(2):479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1644282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Apr;23(8):2006-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Sep;24(17):4348-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Jul;23(7):347-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 Jul 1;16(7):372-380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11403870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):188-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Nov;23(16):1113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(2):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26346922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2019 Mar 18;374(1768):20180176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30966963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 22;11(1):e0147209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26800039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Jun;24(11):2641-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25857321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Apr;18(7):1396-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19284474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(2):799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27596807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1996;34:29-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 5;306(5698):1015-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Oct;204(1):159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 May;90(5):1301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19537550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Oct;26(19):5114-5132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28779535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2017 Sep;17(5):981-990</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28028941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2005 Jun;95(6):608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Oct;103(4):285-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19623208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Lett. 2018 Nov 30;3(1):55-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30788142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 May;222(3):1235-1241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30632169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Jul;24(7):386-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19409650</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Godbout, Julie" sort="Godbout, Julie" uniqKey="Godbout J" first="Julie" last="Godbout">Julie Godbout</name>
<name sortKey="Gros Louis, Marie Claude" sort="Gros Louis, Marie Claude" uniqKey="Gros Louis M" first="Marie-Claude" last="Gros-Louis">Marie-Claude Gros-Louis</name>
<name sortKey="Isabel, Nathalie" sort="Isabel, Nathalie" uniqKey="Isabel N" first="Nathalie" last="Isabel">Nathalie Isabel</name>
<name sortKey="Lamothe, Manuel" sort="Lamothe, Manuel" uniqKey="Lamothe M" first="Manuel" last="Lamothe">Manuel Lamothe</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000364 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000364 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31892951
   |texte=   Going with the flow: Intraspecific variation may act as a natural ally to counterbalance the impacts of global change for the riparian species Populus deltoides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31892951" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020